Question #N136
If the function $f(x) = \frac{2x^2+5x-3}{x+3}$ is defined for all real numbers except for $x = -3$, what is the value of $f(-2)$?
A. -1
B. 1
C. 3
D. 5
Correct Answer is: A
To find $f(-2)$, we substitute $-2$ for $x$ in the expression for $f(x)$. This gives us $f(-2) = \frac{2(-2)^2+5(-2)-3}{-2+3} = \frac{8-10-3}{1} = \frac{-5}{1} = -5$. Therefore, the value of $f(-2)$ is $-5$.