Question #N172

If $x^2 - 2x - 9 = 0$, which of the following is a possible value of $x$?
A. -4
B. 1
C. 3
D. 5

Correct Answer is: C

To solve for x, we can use the quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. In this case, $a = 1$, $b = -2$, and $c = -9$. Substituting these values into the quadratic formula gives us: $x = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(-9)}}{2(1)} = \frac{2 \pm \sqrt{4 + 36}}{2} = \frac{2 \pm \sqrt{40}}{2} = \frac{2 \pm 2\sqrt{10}}{2} = 1 \pm \sqrt{10}$. Of these choices, only 3 is a possible value of x.