Question #N332

The function \(f\) is defined by \(f(x) = \frac{1}{x^2 + 1}\). What is the value of \(f(\sqrt{3})\)?
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. 1
D. 4

Correct Answer is: A

Substituting \(\sqrt{3}\) for x in the equation \(f(x) = \frac{1}{x^2 + 1}\) yields \(f(\sqrt{3}) = \frac{1}{(\sqrt{3})^2 + 1}\). This simplifies to \(f(\sqrt{3}) = \frac{1}{3 + 1} = \frac{1}{4}\).